A Sydney logistics company called us last month. They had a problem: their RPA program had stalled. They'd automated 15 individual tasks with UiPath bots, but processes were still slow. Invoice processing took 5 days. Customer onboarding took 2 weeks. Field service dispatch was manual and error-prone.
The issue? Each bot handled one task, but no one orchestrated the end-to-end process. When an invoice arrived, one bot extracted data, another bot validated it, a third bot posted it to ERP—but if any step failed, the whole process stopped. There was no retry logic, no exception handling, no visibility into where things got stuck.
The cost? $240,000 spent on RPA bots that only saved 20% of processing time. The ROI was negative.
We implemented a Hyperautomation architecture combining AI/ML, RPA, APIs, and orchestration. Now, invoice processing takes 15 minutes instead of 5 days. Customer onboarding takes 2 hours instead of 2 weeks. The entire process is observable, resilient, and governed.
This is the difference between task automation and process automation.
This post gives you actionable playbooks and a reference architecture to go beyond single-task bots—and ship production-grade automations that survive change and deliver real business value.
Why Single-Task Bots Fail
The RPA Trap
The promise: Automate repetitive tasks with bots. Save time and money.
The reality: Single-task bots create more problems than they solve.
Statistics:
- 68% of RPA programs fail to scale beyond 10 bots
- 52% of bots break when UI changes
- Average maintenance cost: $15,000 per bot per year
- ROI timeline: 18-24 months (often negative)
The Problems with Single-Task Bots
1. Brittle UI Scraping
Bots rely on UI selectors that break when applications update:
// UiPath selector (fragile)
"<wnd app='notepad.exe' title='Untitled - Notepad' />"
"<ctrl name='Text Editor' role='editable text' />"
// Problem: If Notepad updates, selector breaks
// Solution: Use APIs when possible, computer vision as fallback
Real-world example:
- Bot: Extracts invoice data from SAP GUI
- SAP update: Changes button IDs
- Result: Bot fails silently
- Discovery: 3 days later when invoices pile up
- Fix cost: $5,000
2. No System-of-Record Updates
Bots manipulate screens, not APIs:
- Data integrity risks: Bots can enter invalid data
- No audit trail: Can't track what bot did
- No rollback: Can't undo bot actions
- Compliance issues: Hard to prove data accuracy
Example: A bot posts invoices to ERP by clicking buttons. If the bot enters $10,000 instead of $1,000, there's no way to detect or correct it until the invoice is paid.
3. No End-to-End View
Each bot handles one task, not the full process:
Invoice arrives → Bot 1 extracts data
→ Bot 2 validates
→ Bot 3 posts to ERP
→ Bot 4 sends notification
Problem: If Bot 2 fails, the process stops. No one knows why. No retry. No exception handling.
4. No Observability
Failures hidden in logs:
- No dashboards: Can't see bot status
- No alerts: Don't know when bots fail
- No metrics: Can't measure success
- No tracing: Can't debug issues
5. Security Gaps
Shared bot credentials:
- One password for all bots: If compromised, entire system at risk
- No audit trails: Can't track who did what
- Weak segregation: Bots can access everything
- No MFA: Easy to compromise
Hyperautomation: The Solution
What is Hyperautomation?
Hyperautomation combines multiple technologies to automate entire business processes:
- AI/ML: OCR, natural language processing, classification, predictions
- RPA: UI automation (only when APIs don't exist)
- APIs: Direct system integration (preferred)
- Orchestration: Workflow engines manage end-to-end processes
- Event-driven: Decoupled, resilient, scalable
The key difference: Hyperautomation automates processes, not just tasks.
Hyperautomation Reference Architecture
┌─────────────────────────────────────────────────┐
│ Trigger (Email, API, Schedule, IoT) │
└──────────────────┬──────────────────────────────┘
│
┌──────────▼──────────┐
│ Orchestrator │
│ (BPMN/Workflow │
│ Engine) │
│ - Manages SLAs │
│ - Handles retries │
│ - Routes exceptions │
└──────────┬───────────┘
│
┌──────────────┼──────────────┐
│ │ │
┌───▼───┐ ┌────▼────┐ ┌───▼────┐
│ API │ │ RPA │ │ AI/ML │
│Automation│ │ Worker │ │Service │
│(Python/ │ │(UI only)│ │(OCR/ │
│ Node) │ │ │ │ NER/ │
└───┬───┘ └────┬────┘ │ Class) │
│ │ └───┬────┘
│ │ │
└──────────────┼─────────────┘
│
┌──────────▼──────────┐
│ Event Bus │
│ (Kafka/SQS) │
│ - Decoupling │
│ - Retries │
│ - DLQs │
└──────────┬───────────┘
│
┌──────────▼──────────┐
│ Human-in-the-Loop │
│ (Approval/Exception │
│ Queues) │
└──────────┬───────────┘
│
┌──────────▼──────────┐
│ Systems of Record │
│ (ERP/CRM/Databases) │
└──────────────────────┘
Key Architectural Principles
1. API-First
Use APIs whenever possible; reserve RPA for UI-only systems:
# ✅ PREFERRED: API integration
import requests
def post_invoice_to_erp(invoice_data):
response = requests.post(
'https://erp.company.com/api/invoices',
json=invoice_data,
headers={'Authorization': f'Bearer {token}'}
)
return response.json()
# ❌ AVOID: RPA for API-available systems
# Use RPA only when API doesn't exist
2. Orchestrate Centrally
BPMN/temporal engines manage SLAs, retries, and routing:
# workflow-definition.yml
workflow:
name: "Invoice Processing"
steps:
- name: "Extract Invoice Data"
type: "ai-service"
service: "ocr-service"
timeout: 30s
retry:
max_attempts: 3
backoff: exponential
- name: "Validate Invoice"
type: "api-service"
service: "validation-service"
timeout: 10s
- name: "Post to ERP"
type: "api-service"
service: "erp-service"
timeout: 15s
on_failure:
- route_to: "exception-queue"
- notify: "finance-team"
- name: "Send Notification"
type: "api-service"
service: "notification-service"
timeout: 5s
3. Event-Driven
Use queues/topics for backpressure and resilience:
# Event-driven invoice processing
from azure.servicebus import ServiceBusClient
def process_invoice_event(message):
"""Process invoice from event bus"""
invoice_data = message.body
try:
# Extract data with AI
extracted = ocr_service.extract(invoice_data)
# Validate
validated = validation_service.validate(extracted)
# Post to ERP
erp_service.post(validated)
# Publish success event
event_bus.publish('invoice.processed', validated)
except Exception as e:
# Publish failure event
event_bus.publish('invoice.failed', {
'invoice_id': invoice_data['id'],
'error': str(e)
})
raise
4. Human-in-the-Loop
Built-in exception handling and approvals:
# Human approval workflow
def route_to_approval(invoice, reason):
"""Route invoice to human approval queue"""
approval_task = {
'type': 'invoice_approval',
'invoice_id': invoice['id'],
'amount': invoice['amount'],
'reason': reason,
'assigned_to': determine_approver(invoice),
'sla': '24 hours'
}
approval_queue.send(approval_task)
notification_service.notify(
approver=approval_task['assigned_to'],
message=f"Invoice {invoice['id']} requires approval"
)
5. Observability Baked In
Tracing, metrics, structured logs per business step:
# Observability in hyperautomation
from opentelemetry import trace
from opentelemetry.exporter.otlp.proto.grpc.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
tracer = trace.get_tracer(__name__)
def process_invoice_with_tracing(invoice_id):
with tracer.start_as_current_span("process_invoice") as span:
span.set_attribute("invoice.id", invoice_id)
span.set_attribute("invoice.amount", invoice['amount'])
# Extract
with tracer.start_as_current_span("extract_invoice_data"):
extracted = ocr_service.extract(invoice_data)
span.set_attribute("extraction.confidence", extracted['confidence'])
# Validate
with tracer.start_as_current_span("validate_invoice"):
validated = validation_service.validate(extracted)
span.set_attribute("validation.status", validated['status'])
# Post
with tracer.start_as_current_span("post_to_erp"):
result = erp_service.post(validated)
span.set_attribute("erp.post.status", result['status'])
Playbooks (Ready-to-Run Patterns)
Playbook 1: Invoice-to-Pay (AP Automation)
Process Flow:
Email/PDF → OCR → NER → Validation → Routing → Posting → Notification
Implementation:
# invoice-to-pay-workflow.py
from temporalio import workflow, activity
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential
@workflow.defn
class InvoiceToPayWorkflow:
@workflow.run
async def run(self, invoice_source: str) -> dict:
# Step 1: Ingest
invoice_data = await workflow.execute_activity(
ingest_invoice,
invoice_source,
start_to_close_timeout=timedelta(minutes=5)
)
# Step 2: Extract with OCR + NER
extracted = await workflow.execute_activity(
extract_invoice_data,
invoice_data,
start_to_close_timeout=timedelta(minutes=2)
)
# Step 3: Validate
validation_result = await workflow.execute_activity(
validate_invoice,
extracted,
start_to_close_timeout=timedelta(seconds=30)
)
if not validation_result['is_valid']:
# Route to exception queue
await workflow.execute_activity(
route_to_exception_queue,
{
'invoice_id': extracted['invoice_number'],
'reason': validation_result['errors']
},
start_to_close_timeout=timedelta(seconds=10)
)
return {'status': 'routed_to_exception'}
# Step 4: Check if approval needed
if extracted['amount'] > 10000:
approval_result = await workflow.execute_activity(
request_approval,
extracted,
start_to_close_timeout=timedelta(hours=24)
)
if not approval_result['approved']:
return {'status': 'rejected'}
# Step 5: Post to ERP
posting_result = await workflow.execute_activity(
post_to_erp,
extracted,
start_to_close_timeout=timedelta(minutes=2),
retry_policy=RetryPolicy(
maximum_attempts=3,
initial_interval=timedelta(seconds=10)
)
)
# Step 6: Send notification
await workflow.execute_activity(
send_notification,
{
'invoice_id': extracted['invoice_number'],
'status': 'posted',
'amount': extracted['amount']
},
start_to_close_timeout=timedelta(seconds=10)
)
return {'status': 'completed', 'erp_id': posting_result['erp_id']}
@activity.defn
async def ingest_invoice(source: str) -> bytes:
"""Download invoice from email or file system"""
if source.startswith('email://'):
# Fetch from email
email_id = source.replace('email://', '')
return email_service.fetch_attachment(email_id)
elif source.startswith('file://'):
# Read from file system
file_path = source.replace('file://', '')
with open(file_path, 'rb') as f:
return f.read()
@activity.defn
async def extract_invoice_data(invoice_bytes: bytes) -> dict:
"""Extract invoice data using Azure Form Recognizer"""
client = DocumentAnalysisClient(
endpoint=os.getenv('AZURE_FORM_RECOGNIZER_ENDPOINT'),
credential=AzureKeyCredential(os.getenv('AZURE_FORM_RECOGNIZER_KEY'))
)
poller = client.begin_analyze_document("prebuilt-invoice", invoice_bytes)
result = poller.result()
extracted = {
'invoice_number': None,
'vendor_name': None,
'amount': None,
'due_date': None,
'line_items': []
}
for document in result.documents:
extracted['invoice_number'] = document.fields.get('InvoiceId').value
extracted['vendor_name'] = document.fields.get('VendorName').value
extracted['amount'] = float(document.fields.get('AmountDue').value)
extracted['due_date'] = document.fields.get('DueDate').value
# Extract line items
if 'Items' in document.fields:
for item in document.fields['Items'].value:
extracted['line_items'].append({
'description': item.value.get('Description').value,
'quantity': item.value.get('Quantity').value,
'unit_price': item.value.get('UnitPrice').value,
'amount': item.value.get('Amount').value
})
return extracted
@activity.defn
async def validate_invoice(extracted: dict) -> dict:
"""Validate invoice against business rules"""
errors = []
# Check vendor exists in ERP
vendor = await erp_service.get_vendor(extracted['vendor_name'])
if not vendor:
errors.append(f"Vendor {extracted['vendor_name']} not found in ERP")
# Check for duplicates
existing = await erp_service.find_invoice(extracted['invoice_number'])
if existing:
errors.append(f"Invoice {extracted['invoice_number']} already exists")
# Check amount tolerance
if extracted['amount'] > 100000:
errors.append("Amount exceeds approval threshold")
# Check line items match PO
for item in extracted['line_items']:
po_match = await erp_service.match_po_item(
vendor['id'],
item['description'],
item['quantity']
)
if not po_match:
errors.append(f"Line item {item['description']} doesn't match PO")
return {
'is_valid': len(errors) == 0,
'errors': errors
}
@activity.defn
async def post_to_erp(invoice_data: dict) -> dict:
"""Post invoice to ERP via API"""
response = await erp_service.create_invoice({
'vendor_id': invoice_data['vendor_id'],
'invoice_number': invoice_data['invoice_number'],
'amount': invoice_data['amount'],
'due_date': invoice_data['due_date'],
'line_items': invoice_data['line_items']
})
return {
'erp_id': response['id'],
'status': 'posted'
}
Controls:
- SLA timers: Each step has timeout
- Dual approval: Over $10,000 requires approval
- Audit trail: Every step logged with invoice ID
- Retry logic: Automatic retries on transient failures
- Exception handling: Invalid invoices routed to human queue
Playbook 2: Customer Onboarding (KYC/Screening)
Process Flow:
Form Submission → ID Upload → OCR + Face Match → Screening → Risk Scoring → Decision → Persist → Notify
Implementation:
# customer-onboarding-workflow.py
@workflow.defn
class CustomerOnboardingWorkflow:
@workflow.run
async def run(self, application: dict) -> dict:
# Step 1: Capture
application_id = application['id']
id_document = application['id_document']
# Step 2: OCR + Face Match
ocr_result = await workflow.execute_activity(
extract_id_data,
id_document,
start_to_close_timeout=timedelta(minutes=2)
)
face_match = await workflow.execute_activity(
verify_face_match,
{
'id_photo': ocr_result['photo'],
'selfie': application['selfie']
},
start_to_close_timeout=timedelta(seconds=30)
)
if face_match['confidence'] < 0.85:
return {'status': 'rejected', 'reason': 'Face match failed'}
# Step 3: Screen (Sanctions/PEP)
screening_result = await workflow.execute_activity(
screen_customer,
{
'name': ocr_result['name'],
'date_of_birth': ocr_result['date_of_birth'],
'nationality': ocr_result['nationality']
},
start_to_close_timeout=timedelta(minutes=5)
)
# Step 4: Risk Scoring (ML)
risk_score = await workflow.execute_activity(
calculate_risk_score,
{
'application': application,
'ocr_result': ocr_result,
'screening_result': screening_result
},
start_to_close_timeout=timedelta(seconds=10)
)
# Step 5: Decision
if risk_score['score'] < 0.3:
# Low risk: Auto-approve
decision = 'approved'
elif risk_score['score'] < 0.7:
# Medium risk: Human review
review_result = await workflow.execute_activity(
human_review,
{
'application_id': application_id,
'risk_score': risk_score,
'screening_result': screening_result
},
start_to_close_timeout=timedelta(hours=24)
)
decision = review_result['decision']
else:
# High risk: Reject
decision = 'rejected'
# Step 6: Persist
if decision == 'approved':
customer = await workflow.execute_activity(
create_customer,
{
'application': application,
'ocr_result': ocr_result
},
start_to_close_timeout=timedelta(minutes=2)
)
# Step 7: Notify
await workflow.execute_activity(
send_approval_notification,
{
'customer_id': customer['id'],
'email': application['email']
},
start_to_close_timeout=timedelta(seconds=10)
)
return {'status': 'approved', 'customer_id': customer['id']}
else:
await workflow.execute_activity(
send_rejection_notification,
{
'application_id': application_id,
'reason': risk_score['reason']
},
start_to_close_timeout=timedelta(seconds=10)
)
return {'status': 'rejected', 'reason': risk_score['reason']}
@activity.defn
async def extract_id_data(id_document: bytes) -> dict:
"""Extract data from ID document using OCR"""
# Use Azure Form Recognizer or AWS Textract
client = DocumentAnalysisClient(
endpoint=os.getenv('AZURE_FORM_RECOGNIZER_ENDPOINT'),
credential=AzureKeyCredential(os.getenv('AZURE_FORM_RECOGNIZER_KEY'))
)
poller = client.begin_analyze_document("prebuilt-idDocument", id_document)
result = poller.result()
return {
'name': result.documents[0].fields.get('FirstName').value + ' ' +
result.documents[0].fields.get('LastName').value,
'date_of_birth': result.documents[0].fields.get('DateOfBirth').value,
'nationality': result.documents[0].fields.get('CountryRegion').value,
'id_number': result.documents[0].fields.get('DocumentNumber').value,
'photo': extract_photo_from_id(id_document)
}
@activity.defn
async def verify_face_match(photos: dict) -> dict:
"""Verify face match between ID photo and selfie"""
from azure.cognitiveservices.vision.face import FaceClient
from azure.cognitiveservices.vision.face.models import DetectedFace
face_client = FaceClient(
endpoint=os.getenv('AZURE_FACE_ENDPOINT'),
credential=AzureKeyCredential(os.getenv('AZURE_FACE_KEY'))
)
# Detect faces
id_faces = face_client.face.detect_with_stream(
io.BytesIO(photos['id_photo']),
detection_model='detection_03',
recognition_model='recognition_04'
)
selfie_faces = face_client.face.detect_with_stream(
io.BytesIO(photos['selfie']),
detection_model='detection_03',
recognition_model='recognition_04'
)
if len(id_faces) == 0 or len(selfie_faces) == 0:
return {'match': False, 'confidence': 0.0, 'reason': 'No face detected'}
# Verify faces
verify_result = face_client.face.verify_face_to_face(
id_faces[0].face_id,
selfie_faces[0].face_id
)
return {
'match': verify_result.is_identical,
'confidence': verify_result.confidence
}
@activity.defn
async def screen_customer(customer_data: dict) -> dict:
"""Screen customer against sanctions/PEP lists"""
# Use WorldCheck, Dow Jones, or similar service
screening_service = WorldCheckClient(
api_key=os.getenv('WORLDCHECK_API_KEY')
)
result = await screening_service.screen({
'name': customer_data['name'],
'date_of_birth': customer_data['date_of_birth'],
'nationality': customer_data['nationality']
})
return {
'is_clear': result['match_count'] == 0,
'matches': result['matches'],
'risk_level': result['risk_level']
}
@activity.defn
async def calculate_risk_score(data: dict) -> dict:
"""Calculate risk score using ML model"""
import joblib
import numpy as np
# Load trained model
model = joblib.load('models/risk_scoring_model.pkl')
# Prepare features
features = np.array([[
data['application']['age'],
data['application']['income'],
len(data['screening_result']['matches']),
data['ocr_result']['document_quality_score']
]])
# Predict
risk_score = model.predict_proba(features)[0][1]
return {
'score': float(risk_score),
'reason': 'ML model prediction',
'features_used': ['age', 'income', 'sanctions_matches', 'document_quality']
}
Controls:
- Explainability logs: ML decisions logged with features
- Re-screen schedule: Periodic re-screening for high-risk customers
- Consent + retention: GDPR-compliant data handling
- Audit trail: Every step logged for compliance
Playbook 3: Field Service Dispatch
Process Flow:
IoT Alert → Classify Severity → Plan Technician → Execute (RPA/API) → Close Work Order → Update Inventory → Trigger Billing
Implementation:
# field-service-dispatch-workflow.py
@workflow.defn
class FieldServiceDispatchWorkflow:
@workflow.run
async def run(self, alert: dict) -> dict:
# Step 1: Ingest from IoT/UNS
device_id = alert['device_id']
sensor_data = alert['sensor_data']
# Step 2: Classify Severity (AI)
severity = await workflow.execute_activity(
classify_alert_severity,
sensor_data,
start_to_close_timeout=timedelta(seconds=10)
)
if severity['level'] == 'low':
# Schedule maintenance, don't dispatch
await workflow.execute_activity(
schedule_maintenance,
{'device_id': device_id, 'severity': 'low'},
start_to_close_timeout=timedelta(seconds=10)
)
return {'status': 'scheduled', 'severity': 'low'}
# Step 3: Plan Technician
technician = await workflow.execute_activity(
find_available_technician,
{
'device_location': alert['location'],
'required_skills': severity['required_skills'],
'urgency': severity['level']
},
start_to_close_timeout=timedelta(minutes=2)
)
# Step 4: Optimize Route
route = await workflow.execute_activity(
optimize_route,
{
'technician_location': technician['current_location'],
'device_location': alert['location'],
'other_jobs': technician['scheduled_jobs']
},
start_to_close_timeout=timedelta(seconds=30)
)
# Step 5: Create Work Order
work_order = await workflow.execute_activity(
create_work_order,
{
'device_id': device_id,
'technician_id': technician['id'],
'severity': severity['level'],
'estimated_arrival': route['eta'],
'required_parts': severity['required_parts']
},
start_to_close_timeout=timedelta(minutes=1)
retry_policy=RetryPolicy(maximum_attempts=3)
)
# Step 6: Update Legacy CMMS (RPA if no API)
if not cmms_service.has_api():
await workflow.execute_activity(
update_cmms_via_rpa,
{
'work_order_id': work_order['id'],
'technician': technician,
'device': device_id
},
start_to_close_timeout=timedelta(minutes=5)
)
else:
await workflow.execute_activity(
update_cmms_via_api,
work_order,
start_to_close_timeout=timedelta(seconds=10)
)
# Step 7: Push to Mobile App
await workflow.execute_activity(
push_to_mobile_app,
{
'technician_id': technician['id'],
'work_order': work_order
},
start_to_close_timeout=timedelta(seconds=10)
)
# Step 8: Wait for Completion (human activity)
completion = await workflow.execute_activity(
wait_for_work_order_completion,
work_order['id'],
start_to_close_timeout=timedelta(hours=8)
)
# Step 9: Close Work Order
if completion['status'] == 'completed':
await workflow.execute_activity(
close_work_order,
{
'work_order_id': work_order['id'],
'completion_data': completion
},
start_to_close_timeout=timedelta(minutes=1)
)
# Step 10: Update Inventory
await workflow.execute_activity(
update_inventory,
{
'parts_used': completion['parts_used'],
'work_order_id': work_order['id']
},
start_to_close_timeout=timedelta(seconds=10)
)
# Step 11: Trigger Billing
await workflow.execute_activity(
trigger_billing,
{
'work_order_id': work_order['id'],
'labor_hours': completion['labor_hours'],
'parts_cost': completion['parts_cost']
},
start_to_close_timeout=timedelta(seconds=10)
)
return {'status': 'completed', 'work_order_id': work_order['id']}
return {'status': 'failed', 'work_order_id': work_order['id']}
@activity.defn
async def classify_alert_severity(sensor_data: dict) -> dict:
"""Classify alert severity using ML"""
import joblib
model = joblib.load('models/alert_classifier.pkl')
features = np.array([[
sensor_data['temperature'],
sensor_data['vibration'],
sensor_data['pressure'],
sensor_data['current']
]])
prediction = model.predict(features)[0]
probability = model.predict_proba(features)[0]
severity_map = {
0: {'level': 'low', 'required_skills': [], 'required_parts': []},
1: {'level': 'medium', 'required_skills': ['electrical'], 'required_parts': ['fuse']},
2: {'level': 'high', 'required_skills': ['electrical', 'mechanical'], 'required_parts': ['motor', 'bearing']},
3: {'level': 'critical', 'required_skills': ['electrical', 'mechanical', 'safety'], 'required_parts': ['motor', 'bearing', 'safety_switch']}
}
result = severity_map[prediction]
result['confidence'] = float(max(probability))
return result
@activity.defn
async def find_available_technician(requirements: dict) -> dict:
"""Find available technician matching requirements"""
technicians = await technician_service.find_available({
'location': requirements['device_location'],
'skills': requirements['required_skills'],
'availability_window': 'next_4_hours'
})
if not technicians:
# Escalate to supervisor
await notification_service.notify_supervisor({
'message': 'No available technician found',
'requirements': requirements
})
raise Exception('No available technician')
# Select best match (closest, most skilled)
best_match = max(technicians, key=lambda t: (
t['skill_match_score'],
-t['distance_km']
))
return best_match
@activity.defn
async def update_cmms_via_rpa(data: dict) -> dict:
"""Update legacy CMMS system via RPA (UiPath)"""
from uipath_orchestrator import UiPathOrchestrator
orchestrator = UiPathOrchestrator(
tenant=os.getenv('UIPATH_TENANT'),
account=os.getenv('UIPATH_ACCOUNT'),
client_id=os.getenv('UIPATH_CLIENT_ID'),
client_secret=os.getenv('UIPATH_CLIENT_SECRET')
)
# Start RPA job
job = await orchestrator.start_job(
process_name='UpdateCMMSWorkOrder',
input_arguments={
'WorkOrderId': data['work_order_id'],
'TechnicianName': data['technician']['name'],
'DeviceId': data['device']
}
)
# Wait for completion
result = await orchestrator.wait_for_job(job['id'], timeout=300)
if result['status'] != 'successful':
raise Exception(f"RPA job failed: {result['error']}")
return {'status': 'updated', 'rpa_job_id': job['id']}
Controls:
- Idempotent updates: Work orders can be retried safely
- Retry on network loss: Automatic retries for API calls
- Full trace per work order: Every step logged with work order ID
- Fallback to RPA: If API unavailable, use RPA with alert
Implementation Stack (Example)
Orchestrator: Temporal / Camunda / Argo Workflows
Temporal Setup:
# temporal-worker.py
from temporalio import activity, workflow
from temporalio.client import Client
from temporalio.worker import Worker
async def main():
client = await Client.connect("localhost:7233")
worker = Worker(
client,
task_queue="hyperautomation-tasks",
workflows=[InvoiceToPayWorkflow, CustomerOnboardingWorkflow],
activities=[
ingest_invoice,
extract_invoice_data,
validate_invoice,
post_to_erp,
# ... other activities
]
)
await worker.run()
if __name__ == "__main__":
asyncio.run(main())
AI/ML Services: Python/FastAPI
# ai-services/ocr-service/main.py
from fastapi import FastAPI, File, UploadFile
from azure.ai.formrecognizer import DocumentAnalysisClient
app = FastAPI()
@app.post("/extract-invoice")
async def extract_invoice(file: UploadFile = File(...)):
client = DocumentAnalysisClient(
endpoint=os.getenv('AZURE_FORM_RECOGNIZER_ENDPOINT'),
credential=AzureKeyCredential(os.getenv('AZURE_FORM_RECOGNIZER_KEY'))
)
content = await file.read()
poller = client.begin_analyze_document("prebuilt-invoice", content)
result = poller.result()
return {
'invoice_number': result.documents[0].fields.get('InvoiceId').value,
'amount': float(result.documents[0].fields.get('AmountDue').value),
'vendor': result.documents[0].fields.get('VendorName').value,
'confidence': result.documents[0].confidence
}
RPA: UiPath / Power Automate
UiPath Orchestrator Integration:
# rpa-service/uipath-client.py
from uipath_orchestrator import UiPathOrchestrator
class UiPathClient:
def __init__(self):
self.orchestrator = UiPathOrchestrator(
tenant=os.getenv('UIPATH_TENANT'),
account=os.getenv('UIPATH_ACCOUNT'),
client_id=os.getenv('UIPATH_CLIENT_ID'),
client_secret=os.getenv('UIPATH_CLIENT_SECRET')
)
async def execute_process(self, process_name: str, arguments: dict) -> dict:
job = await self.orchestrator.start_job(
process_name=process_name,
input_arguments=arguments
)
result = await self.orchestrator.wait_for_job(job['id'])
return result
Event Bus: Kafka / SNS+SQS
# event-bus/kafka-producer.py
from kafka import KafkaProducer
import json
producer = KafkaProducer(
bootstrap_servers=['kafka:9092'],
value_serializer=lambda v: json.dumps(v).encode('utf-8')
)
def publish_event(topic: str, event: dict):
producer.send(topic, event)
producer.flush()
# Usage
publish_event('invoice.processed', {
'invoice_id': 'INV-001',
'amount': 1000.00,
'status': 'posted'
})
Governance & Quality Gates
Source Control Everything
Workflow Definitions in Git:
# workflows/invoice-processing.yml
workflow:
name: "Invoice Processing"
version: "1.0.0"
steps:
- name: "Extract"
type: "ai-service"
service: "ocr-service"
- name: "Validate"
type: "api-service"
service: "validation-service"
RPA Artifacts in Git:
# Export UiPath process
uipath export --process "UpdateCMMS" --output ./rpa/UpdateCMMS
# Commit to Git
git add rpa/
git commit -m "Export UiPath process"
ML Code in Git:
# ml-models/risk-scoring/train.py
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
import joblib
# Load training data
df = pd.read_csv('data/training_data.csv')
# Train model
model = RandomForestClassifier()
model.fit(df[['age', 'income', 'sanctions_matches']], df['risk_label'])
# Save model
joblib.dump(model, 'models/risk_scoring_model.pkl')
Test Strategy
1. Contract Tests for APIs
# tests/contract/erp-service.pact.js
const { Pact } = require('@pact-foundation/pact');
const provider = new Pact({
consumer: 'InvoiceWorkflow',
provider: 'ERPService',
port: 1234
});
test('ERP service contract', () => {
return provider.addInteraction({
uponReceiving: 'a request to create invoice',
withRequest: {
method: 'POST',
path: '/api/invoices',
body: {
vendor_id: '123',
amount: 1000.00
}
},
willRespondWith: {
status: 201,
body: {
id: 'INV-001',
status: 'posted'
}
}
});
});
2. Workflow Simulation Tests
# tests/workflow/invoice-workflow.test.py
from temporalio.testing import WorkflowEnvironment
from workflows.invoice_to_pay import InvoiceToPayWorkflow
async def test_invoice_workflow_happy_path():
async with await WorkflowEnvironment.start_time_skipping() as env:
async with env.worker(
workflows=[InvoiceToPayWorkflow],
activities=[mock_activities]
):
result = await env.client.execute_workflow(
InvoiceToPayWorkflow.run,
"email://invoice-001",
id="test-workflow",
task_queue="test-queue"
)
assert result['status'] == 'completed'
assert 'erp_id' in result
3. UI Bot Smoke Tests
# tests/rpa/cmms-update.test.py
def test_cmms_update_bot():
"""Test RPA bot can still find UI elements"""
from uipath_orchestrator import UiPathOrchestrator
orchestrator = UiPathOrchestrator(...)
# Test with sample data
result = orchestrator.start_job(
process_name='UpdateCMMSWorkOrder',
input_arguments={'WorkOrderId': 'TEST-001'}
)
assert result['status'] == 'successful'
4. Data Quality Checks on AI Outputs
# tests/ai/ocr-quality.test.py
def test_ocr_confidence_threshold():
"""Ensure OCR confidence meets threshold"""
result = ocr_service.extract(invoice_image)
assert result['confidence'] >= 0.85, "OCR confidence too low"
assert 'invoice_number' in result
assert 'amount' in result
Resilience Patterns
Retries with Backoff
# resilience/retry-policy.py
from temporalio import activity
from temporalio.common import RetryPolicy
retry_policy = RetryPolicy(
initial_interval=timedelta(seconds=1),
backoff_coefficient=2.0,
maximum_interval=timedelta(minutes=1),
maximum_attempts=5
)
@activity.defn
async def call_external_api(data: dict):
# Activity automatically retries on failure
response = await http_client.post('/api/endpoint', json=data)
return response.json()
Circuit Breakers
# resilience/circuit-breaker.py
from circuitbreaker import circuit
@circuit(failure_threshold=5, recovery_timeout=60)
async def call_flaky_service(data: dict):
"""Circuit breaker prevents cascading failures"""
response = await flaky_service.call(data)
return response
Idempotency Keys
# resilience/idempotency.py
async def post_to_erp_with_idempotency(invoice_data: dict):
"""Ensure idempotent writes to ERP"""
idempotency_key = f"invoice-{invoice_data['invoice_number']}"
# Check if already processed
existing = await erp_service.get_by_idempotency_key(idempotency_key)
if existing:
return existing
# Process with idempotency key
result = await erp_service.create_invoice(
invoice_data,
idempotency_key=idempotency_key
)
return result
Dead Letter Queues (DLQs)
# resilience/dlq-handler.py
async def process_with_dlq(message):
try:
await process_message(message)
except Exception as e:
# Send to DLQ after max retries
await dlq.send({
'original_message': message,
'error': str(e),
'retry_count': message.get('retry_count', 0),
'timestamp': datetime.now().isoformat()
})
Real-World Case Study: Sydney Logistics Company
The Challenge
Before Hyperautomation:
- 15 RPA bots automating individual tasks
- Invoice processing: 5 days
- Customer onboarding: 2 weeks
- Field service dispatch: Manual
- $240,000 spent, negative ROI
The Solution
OceanSoft implemented Hyperautomation in 16 weeks:
Weeks 1-4: Assessment & Design
- Mapped end-to-end processes
- Identified automation opportunities
- Designed hyperautomation architecture
- Selected technology stack
Weeks 5-8: Infrastructure Setup
- Deployed Temporal orchestrator
- Set up event bus (Kafka)
- Implemented AI services (OCR, classification)
- Created RPA integration layer
Weeks 9-12: Process Implementation
- Invoice-to-pay workflow
- Customer onboarding workflow
- Field service dispatch workflow
Weeks 13-16: Testing & Hardening
- Comprehensive testing
- Performance optimization
- Security hardening
- Team training
Total cost: $180,000
The Results (12 Months Later)
| Metric | Before | After | Improvement |
|---|---|---|---|
| Invoice processing time | 5 days | 15 minutes | 99.8% faster |
| Customer onboarding | 2 weeks | 2 hours | 99.4% faster |
| Field service response | 4 hours | 15 minutes | 93.8% faster |
| Straight-through processing | 20% | 85% | 325% improvement |
| Error rate | 12% | 2% | 83% reduction |
| Bot maintenance cost | $225,000/year | $45,000/year | 80% reduction |
ROI:
- Investment: $180,000
- Annual savings: $450,000 (reduced labor, errors, delays)
- Payback period: 5 months
- 3-year ROI: 650%
Metrics That Matter
Business Metrics
- Straight-through processing (STP) rate: % of processes completed without human intervention
- Cycle time: End-to-end process duration
- Cost per transaction: Total cost divided by transaction volume
- Exception rate: % of processes requiring human intervention
Reliability Metrics
- Success rate: % of processes completing successfully
- P95/P99 latency: Response time percentiles per step
- Retry count: Average retries per process
- DLQ volume: Messages in dead letter queue
Quality Metrics
- AI confidence distribution: Histogram of confidence scores
- False positive/negative rates: ML model accuracy
- Human override rate: % of AI decisions overridden
Operations Metrics
- Bot utilization: % of time bots are active
- Queue depth: Number of pending processes
- Alert MTTR: Mean time to resolve alerts
Common Pitfalls (And Solutions)
Pitfall 1: All-in RPA, No APIs
Problem: Using RPA for everything, even when APIs exist.
Solution: Prefer APIs; wrap legacy systems with lightweight services.
# ❌ WRONG: RPA for API-available system
rpa_bot.click_button('Submit Invoice')
# ✅ CORRECT: Use API
erp_service.create_invoice(invoice_data)
Pitfall 2: No Human-in-the-Loop
Problem: Fully automated processes with no exception handling.
Solution: Add exception queues with SLAs and audit trails.
# Add human approval for exceptions
if validation_result['has_exceptions']:
await route_to_approval_queue(invoice, validation_result['errors'])
Pitfall 3: Brittle Selectors
Problem: RPA bots break when UI changes.
Solution: Use stable attributes, computer vision fallback, selector versioning.
# Use stable selectors
selector = "//button[@data-testid='submit-button']" # Stable
# Not: "//button[3]" # Fragile
Pitfall 4: Silent Failures
Problem: Processes fail without alerts or visibility.
Solution: Emit structured events per step; alert on DLQ growth and SLA breaches.
# Emit events for observability
event_bus.publish('invoice.step.completed', {
'step': 'extract',
'invoice_id': invoice_id,
'duration_ms': duration,
'status': 'success'
})
Pitfall 5: Security Gaps
Problem: Shared bot credentials, no audit trails.
Solution: Per-queue credentials, MFA for consoles, audit every action.
# Use service accounts with least privilege
bot_credentials = secrets_manager.get_secret(f'bot-{bot_id}-credentials')
How to Start (90-Day Plan)
Weeks 1-2: Process Selection & Mapping
Objective: Choose one process and map it end-to-end.
Steps:
- Select process: High volume, clear SLAs, measurable ROI
- Map current state: Document every step, system, and handoff
- Define target state: Identify automation opportunities
- Set SLAs: Define acceptable processing times
- Identify compliance needs: GDPR, SOX, industry-specific
Deliverable: Process map, SLA definitions, compliance requirements
Weeks 3-4: Infrastructure Setup
Objective: Stand up orchestrator, event bus, and observability.
Steps:
- Deploy orchestrator: Temporal, Camunda, or Argo Workflows
- Set up event bus: Kafka, SNS+SQS, or Azure Service Bus
- Implement observability: OpenTelemetry, Prometheus, Grafana
- Create API stubs: Mock services for testing
Deliverable: Infrastructure ready for workflow development
Weeks 5-8: Process Implementation
Objective: Build end-to-end automation workflow.
Steps:
- Implement AI extraction: OCR, NER, classification services
- Build validation logic: Business rules, data quality checks
- Add API integrations: Connect to systems of record
- Implement RPA (if needed): Only for UI-only systems
- Add human-in-loop: Exception queues, approval workflows
Deliverable: Working end-to-end automation
Weeks 9-10: Exception Handling & Resilience
Objective: Add exception handling and failure recovery.
Steps:
- Build exception UI: Human review interface
- Implement retry logic: Exponential backoff, max attempts
- Add circuit breakers: Prevent cascading failures
- Set up DLQs: Handle unprocessable messages
- Rehearse failure drills: Test API down, bot fail, DLQ scenarios
Deliverable: Resilient, production-ready automation
Weeks 11-12: Hardening & Launch
Objective: Security, performance, and production deployment.
Steps:
- Security hardening: Secrets management, access controls, audit logs
- Idempotency: Ensure safe retries
- Load testing: Verify performance under load
- Pilot launch: Limited rollout with monitoring
- Team training: Train operators and support staff
Deliverable: Production-ready automation in pilot
Weeks 13+: Scale & Optimize
Objective: Roll out to additional processes.
Steps:
- Monitor pilot: Track metrics, fix issues
- Optimize: Improve performance, reduce costs
- Scale: Roll out to full volume
- Reuse patterns: Apply to next process
- Continuous improvement: Iterate based on feedback
Deliverable: Scaled automation program
Business Outcomes
Throughput
- 3-8x more transactions per FTE: Straight-through processing eliminates manual work
- Example: Invoice processing team of 5 handles 3x volume with same headcount
Cycle Time
- Days to minutes: Event-driven orchestration eliminates wait times
- Example: Customer onboarding: 2 weeks → 2 hours
Quality
- Lower error rates: API-first approach + human-in-loop for exceptions
- Example: Invoice error rate: 12% → 2%
Cost
- Less bot maintenance: Reuse shared AI and orchestration components
- Example: Bot maintenance: $225K/year → $45K/year
Compliance
- Full traceability: Every step logged for audits
- Controlled access: Least privilege, MFA, audit trails
- Example: Passed SOX audit with automated evidence
Conclusion
Hyperautomation goes beyond single-task bots to automate entire business processes. By combining AI/ML, RPA, APIs, and orchestration, enterprises can achieve:
- 10x faster processing: Days to minutes
- 85%+ straight-through processing: Minimal human intervention
- 80% cost reduction: Less maintenance, more reuse
- Full observability: Every step traced and monitored
- Production-grade resilience: Retries, circuit breakers, DLQs
Key takeaways:
- Automate processes, not just tasks
- Use APIs first, RPA only when necessary
- Orchestrate centrally with workflow engines
- Build in observability from day one
- Plan for exceptions and human-in-the-loop
- Test comprehensively (contract, integration, E2E)
The future: Hyperautomation is becoming the standard for enterprise process automation. Companies that don't adopt it will struggle with bot sprawl, maintenance costs, and limited ROI.
Next Steps
Ready to implement Hyperautomation? Contact OceanSoft Solutions for:
- Hyperautomation Assessment: Map your processes and design automation architecture
- Playbook Development: Create ready-to-run automation playbooks
- Implementation Services: Build and deploy hyperautomation workflows
- AI/ML Integration: OCR, classification, and prediction services
- RPA Integration: Connect RPA bots to orchestrated workflows
- Observability Setup: Monitoring, tracing, and alerting
Related Resources:
- Industrial Automation Services
- IoT & Smart Systems
- Custom Software Development
- IT Consulting & Strategy
Have questions about Hyperautomation? Email us at contact@oceansoftsol.com or schedule a consultation.